skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ayebare, Samuel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Estimating spatiotemporal patterns of population density is a primary objective of wildlife monitoring programs. However, estimating density is challenging for species that are elusive and/or occur in habitats with limited visibility. In such situations, indirect measures (e.g., nests, dung) can serve as proxies for counts of individuals. Scientists have developed approaches to estimate population density using these “indirect count” data, although current methods do not adequately account for variation in sign production and spatial patterns of animal density. In this study, we describe a modified hierarchical distance sampling model that maximizes the information content of indirect count data using Bayesian inference. We apply our model to assess the status of chimpanzee and elephant populations using counts of nests and dung, respectively, which were collected along transects in 2007 and 2021 in western Uganda. Compared with conventional methods, our modeling framework produced more precise estimates of covariate effects on expected animal density by accounting for both long‐term and recent variations in animal abundance and enabled the estimation of the number of days that animal signs remained visible. We estimated a 0.98 probability that chimpanzee density in the region had declined by at least 10% and a 0.99 probability that elephant density had increased by 50% from 2007 to 2021. We recommend applying our modified hierarchical distance sampling model in the analysis of indirect count data to account for spatial variation in animal density, assess population change between survey periods, estimate the decay rate of animal signs, and obtain more precise density estimates than achievable with traditional methods. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. Niche theory predicts that ecologically similar species can coexist through multidimensional niche partitioning. However, owing to the challenges of accounting for both abiotic and biotic processes in ecological niche modelling, the underlying mechanisms that facilitate coexistence of competing species are poorly understood. In this study, we evaluated potential mechanisms underlying the coexistence of ecologically similar bird species in a biodiversity-rich transboundary montane forest in east-central Africa by computing niche overlap indices along an environmental elevation gradient, diet, forest strata, activity patterns and within-habitat segregation across horizontal space. We found strong support for abiotic environmental habitat niche partitioning, with 55% of species pairs having separate elevation niches. For the remaining species pairs that exhibited similar elevation niches, we found that within-habitat segregation across horizontal space and to a lesser extent vertical forest strata provided the most likely mechanisms of species coexistence. Coexistence of ecologically similar species within a highly diverse montane forest was determined primarily by abiotic factors (e.g. environmental elevation gradient) that characterize the Grinnellian niche and secondarily by biotic factors (e.g. vertical and horizontal segregation within habitats) that describe the Eltonian niche. Thus, partitioning across multiple levels of spatial organization is a key mechanism of coexistence in diverse communities. 
    more » « less
  3. Abstract Data deficiencies among rare or cryptic species preclude assessment of community‐level processes using many existing approaches, limiting our understanding of the trends and stressors for large numbers of species. Yet evaluating the dynamics of whole communities, not just common or charismatic species, is critical to understanding and the responses of biodiversity to ongoing environmental pressures.A recent surge in both public science and government‐funded data collection efforts has led to a wealth of biodiversity data. However, these data collection programmes use a wide range of sampling protocols (from unstructured, opportunistic observations of wildlife to well‐structured, design‐based programmes) and record information at a variety of spatiotemporal scales. As a result, available biodiversity data vary substantially in quantity and information content, which must be carefully reconciled for meaningful ecological analysis.Hierarchical modelling, including single‐species integrated models and hierarchical community models, has improved our ability to assess and predict biodiversity trends and processes. Here, we highlight the emerging ‘integrated community modelling’ framework that combines both data integration and community modelling to improve inferences on species‐ and community‐level dynamics.We illustrate the framework with a series of worked examples. Our three case studies demonstrate how integrated community models can be used to extend the geographic scope when evaluating species distributions and community‐level richness patterns; discern population and community trends over time; and estimate demographic rates and population growth for communities of sympatric species. We implemented these worked examples using multiple software methods through the R platform via packages with formula‐based interfaces and through development of custom code in JAGS, NIMBLE and Stan.Integrated community models provide an exciting approach to model biological and observational processes for multiple species using multiple data types and sources simultaneously, thus accounting for uncertainty and sampling error within a unified framework. By leveraging the combined benefits of both data integration and community modelling, integrated community models can produce valuable information about both common and rare species as well as community‐level dynamics, allowing for holistic evaluation of the effects of global change on biodiversity. 
    more » « less
  4. Abstract As data and computing power have surged in recent decades, statistical modeling has become an important tool for understanding ecological patterns and processes. Statistical modeling in ecology faces two major challenges. First, ecological data may not conform to traditional methods, and second, professional ecologists often do not receive extensive statistical training. In response to these challenges, the journalEcologyhas published many innovative statistical ecology papers that introduced novel modeling methods and provided accessible guides to statistical best practices. In this paper, we reflect onEcology's history and its role in the emergence of the subdiscipline of statistical ecology, which we define as the study of ecological systems using mathematical equations, probability, and empirical data. We showcase 36 influential statistical ecology papers that have been published inEcologyover the last century and, in so doing, comment on the evolution of the field. As data and computing power continue to increase, we anticipate continued growth in statistical ecology to tackle complex analyses and an expanding role forEcologyto publish innovative and influential papers, advancing the discipline and guiding practicing ecologists. 
    more » « less